본문 바로 가기

[ 테크 ] 핵잼 사이언스

자전거가 빛의 속도에 가깝게
달린다면 어떻게 보일까?

by서울신문

서울신문

자전거가 빛의 속도에 가깝게 달린다면 어떻게 보일까?

공상과학(SF) 영화에서 속도는 우주선 등의 성능을 나타내는 데 중요한 요소 중 하나다. 어떤 우주선은 설정상 빛의 속도나 그에 가까운 속도로 비행할 수 있다고 나온다. 그런데 광속에 가까운 속도인 아광속으로 이동하는 물체가 실제로 우리 눈에 어떻게 보이는지를 쉽게 설명하는 논문은 거의 없었다.


이에 영국 서리대 연구진이 시행한 한 연구에서는 아광속으로 이동하는 자전거가 맨눈에 어떻게 보이는지를 평면(2D)과 입체(3D) 이미지 양쪽 모두에서 컴퓨터로 시뮬레이션(모의실험)을 진행했다. 그 결과, 아광속으로 이동하는 자전거는 관찰자와의 위치 관계에 의해 극적으로 늘어나 보이는 것으로 나타났다.

평면상 아광속 자전거, 가장 가까이 지날 때 가장 길게 늘어나

서울신문

실제 시뮬레이션에 쓰인 2D 버전의 아광속 자전거

연구를 수행한 에번 크라이어젱킨스 연구원과 폴 스티븐슨 박사는 논문을 통해 먼저 단순화한 평면상의 아광속 자전거가 어떻게 보이는지를 설명했다. 이들이 공개한 그림 속 2D 자전거는 선으로 구성돼 있는 것처럼 보이지만 실제로는 많은 작은 점이 모여 모양을 이룬 것이다.


이들 연구자는 아인슈타인의 상대성 이론을 적용했을 때 가상의 공간에서 이 2D 자전거를 광속의 90%로 왼쪽에서 오른쪽으로 이동하게 했다. 이때 관찰자의 시선은 그림에서와같이 자전거의 이동 방향과 수직으로 했다.


그 결과, 자전거는 아광속으로 이동할 때 관찰자와 가까워질수록 앞뒤로 늘어나 보이고 멀어질수록 앞바퀴와 뒷바퀴 폭이 좁아 보이는 것으로 나타났다. 이처럼 자전거가 늘어나 보이는 이유는 같은 시간에 물체의 각 부위를 동시에 보는 행위가 물리적으로 불가능하기 때문이다.


우리가 사물을 볼 때 영상(물체의 형체)은 물체가 동시에 방출하는 광자가 아니다. 따라서 사람이 보는 것은 물체에서 서로 다른 시기에 나오는 광자들이 함께 엮인 일종의 조각보(패치워크)이다.

서울신문

좌우 눈에 빛이 닿는 시간이 다르므로, 실제로는 겹쳐 보인다.

또 사람은 눈이 두 개 있어 엄밀하게 말하면 빛은 오른쪽 눈과 왼쪽 눈에 서로 다른 시간에 도달한다. 따라서 뇌가 인식하는 능력을 떠나 오른쪽 눈과 왼쪽 눈에 도달하는 빛의 시차를 고려하면 자전거가 겹쳐 보인다.

입체상의 아광속 자전거는 어떻게 보이나

서울신문

빨간 점이 모여 그려진 3D 버전의 아광속 자전거.

그다음으로 이들 연구자는 더욱더 현실에 가까운 3D로 그린 자전거로 모의실험을 진행했다. 입체상의 아광속 자전거는 평면일 때와 마찬가지로 점의 집합으로 이뤄졌다. 또 3D 이미지에서는 각 점에서 붉은빛을 발하도록 설정을 바꿨다. 이미지에 색상을 더한 이유는 빛의 도플러 효과를 확인하기 위한 것이다.


빛에는 파도로서의 성질도 있어 파장이 긴 빨간색이라도 아광속으로 접근하면 파장이 압축돼 파장이 더욱더 짧은 노란색이나 파란색 또는 보라색으로 변한다.

서울신문

광속의 65%로 눈앞을 가로 지르는 경우.

연구진은 붉게 빛나는 3D 아광속 자전거가 광속의 65%로 눈앞을 지날 때(그림) 어떻게 다르게 보이는지를 타임랩스 방식으로 나타냈다. 이 역시 자전거가 붉게 빛나도 접근하고 있는 부분은 파란색이나 노란색으로 표시되고 멀어져가는 부분은 검붉게 보인다. 마지막 프레임에서 멀어지는 자전거가 검게 표시돼 있는 그림은 도플러 효과에 의해 자전거가 발하는 색상이 가시광 구역을 벗어나 적외선이 됐다는 것을 의미한다. 이처럼 아광속의 세계에서는 모양뿐만이 아니라 색상도 다르게 보이는 것이다.

서울신문

광속의 90%로 눈앞을 가로 지르는 경우.

반면 아광속 자전거의 속도를 광속의 90%로 설정했을 때(그림), 가시광선 상에서 보이는 부분은 좁아져 맨눈으로는 거의 보이지 않는다. 또 접근할 때의 왜곡도 매우 커져 입체적인 원형을 확인하는 것이 어려워진다.

광속에 가까워질수록 눈에 보이지 않으며 고무처럼 늘어나

이 연구를 통해 만일 SF 영화 등으로 아광속 이동을 현실적으로 나타낼 때는 속도 제한을 둘 필요가 있음을 알 수 있었다. 광속에 매우 가까운 경우(90%) 우주선은 고무처럼 급격히 늘어나고 줄어들어 보일 뿐만 아니라 색상도 가시광선 영역에서 벗어나기 때문이다. 하지만 적절하게 속도를 설정하면 우주선의 색상을 바꿔 표현할 수 있는 것이다.


1938년 물리학자 조지 가모브가 출간한 저서 ‘톰킨스 물리열차를 타다’(Tomkins ‘Adventures in Wonderland)에서는 자전거 속도가 광속에 가까운 기묘한 세계가 그려진다. 이 세계에서는 약간의 가속으로 주변 경치가 쉽게 일그러지고 경치의 색상이 변화한다. 여기서 그려진 아광속 세계의 표현은 1905년 발표된 아인슈타인의 상대성이론에 입각한 것이지만, 어디까지나 상상할 수 없었다. 하지만 이번 연구를 통해 SF적인 상상이 과학적 사실과 일치한다는 것이 증명된 것이다.


자세한 연구 결과는 ‘영국 왕립학회보A’(Proceedings of the Royal Society A) 최신호(6월3일자)에 실렸다.


사진=영국 왕립학회보A

윤태희 기자 th20022@seoul.co.kr